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Most previous methods in heterogeneous transfer learning learn a cross-domain feature 
mapping between different domains based on some cross-domain instance-correspon-
dences. Such instance-correspondences are assumed to be representative in the source 
domain and the target domain, respectively. However, in many real-world scenarios, this 
assumption may not hold. As a result, the constructed feature mapping may not be pre-
cise, and thus the transformed source-domain labeled data using the feature mapping are 
not useful to build an accurate classifier for the target domain. In this paper, we offer 
a new heterogeneous transfer learning framework named Hybrid Heterogeneous Transfer 
Learning (HHTL), which allows the selection of corresponding instances across domains to 
be biased to the source or target domain. Our basic idea is that though the correspond-
ing instances are biased in the original feature space, there may exist other feature spaces, 
projected onto which, the corresponding instances may become unbiased or representa-
tive to the source domain and the target domain, respectively. With such a representation, 
a more precise feature mapping across heterogeneous feature spaces can be learned for 
knowledge transfer. We design several deep-learning-based architectures and algorithms 
that enable learning aligned representations. Extensive experiments on two multilingual 
classification datasets verify the effectiveness of our proposed HHTL framework and algo-
rithms compared with some state-of-the-art methods.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Transfer learning or domain adaptation is an important and promising machine learning paradigm, which aims to trans-
fer knowledge extracted from an auxiliary domain, i.e., the source domain, where sufficient labeled data are available, to 
solve learning problems in a new domain, i.e., the target domain, with little or no additional human supervision [1]. Re-
cently, more and more attention has been shifted from transferring knowledge across homogeneous domains to transferring 
knowledge across heterogeneous domains, where the source domain and the target domain have heterogeneous types of 
features [2,3]. In contrast with homogeneous transfer learning, which assumes that the source domain data and the target 
domain data are represented in the same feature space of the same dimensionality [4,5], and thus the domain difference is 
only caused by bias in features or data distributions, heterogeneous transfer learning allows the source domain data and the 
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Fig. 1. HHTL Case I: Cross-language bias by translation. Consider a binary classification problem, where circles are of one class, and squares are of the 
other class. The points with gray background in the source domain (English) are the selected representatives, while those with gray background in the 
target domain (German) are their correspondences via translation or a feature map learned from English and German corresponding documents. In this 
case, representatives of the source domain are supposed to be randomly selected, but their correspondences in the target domain are biased to the overall 
population of the target domain.

target domain data to be represented by non-overlapping feature spaces. Heterogeneous transfer learning has been shown 
to be crucial in many real-world applications. For instance, many Natural Language Processing (NLP) tasks, such as named 
entity recognition, coreference resolution, etc., highly rely on sufficient annotated corpora and linguistic/semantic knowl-
edge bases to build an accurate classifier. For English, annotated corpora and knowledge bases are widely available, while 
for other languages, such as Thai, Vietnamese, etc., few resources are available. In this case, heterogeneous transfer learning 
is desirable to transfer knowledge extracted from the rich English resources to solve NLP tasks in some other languages of 
poor resources.

Most existing approaches to heterogeneous transfer learning aim to learn a feature mapping across heterogeneous fea-
ture spaces based on some cross-domain correspondences constructed either by labels in both the source domain and the 
target domain [6] or a translator between domains [7]. With the learned feature mapping, instances can be mapped from 
the target domain to the source domain or the other way round. In this way, if the feature mapping is learned precisely, 
then source-domain labeled data can still be used to learn an accurate classifier for the target domain. A common assump-
tion behind these methods is that the selected instance-correspondences are representative to the source domain and the 
target domain such that a “perfect” cross-domain feature mapping can be learned. However, in many real-world scenarios, 
this assumption may not hold, which means that the selected corresponding instances may be biased to get the overall 
population(s) of the source domain or/and the target domain, and thus are not able to represent either the source domain 
data or the target domain data. As a result, it may fail to learn a precise cross-domain feature mapping based on a relatively 
small set of cross-domain instance-correspondences.

Consider cross-language document classification as a motivating example as illustrated in Fig. 1. The objective is to learn 
a text classifier whose goal is to automatically categorize documents in German (i.e., the target domain) only with a set 
of annotated English documents (i.e., the source domain). To apply heterogeneous transfer learning methods to solve this 
task, one can first randomly select some German documents, which can be considered as representatives in the German 
(or source) domain, and then simply construct German-English document-correspondences by translating the selected Ger-
man documents into English using Google translator. However, the wordbook of the translated English documents may be 
quite different from that of the native English documents. For instance, the German word “betonen” is translated into the 
English word “emphasize” by Google translator. However, in an English document written by a native English speaker, its 
corresponding word might be “highlight” or “stress” instead. This is referred to as the “feature bias” issue in word us-
ages between the translated documents and the original ones. Therefore, the translated English documents may be biased 
or not representative in the English (i.e., source) domain. In this case, a feature mapping learned based on such biased 
cross-domain correspondences may not be effective for knowledge transfer.

As another example shown in Fig. 2, consider a multilingual sentiment classification task, which is to automatically 
predict the overall sentiment polarities of song reviews in German (i.e., the target domain), given labeled book reviews 
in English (i.e., the source domain) as well as some unlabeled book reviews in German. To construct correspondences 
between the source domain and the target domain, one can randomly select some unlabeled book reviews in German, and 
translate them into English using Google translator. Even though the selected book reviews in German can be considered 
as representatives to the German book domain, they are not representative to the German song domain, which is the 
target domain in this example. This is because opinion and topic words used for different types of products can be very 
different [8–10]. This type of “feature bias” is caused by the difference of word usage for different types of products. In 
addition, similarly to the former example, their English translations are not representative in the English book domain 
either, which is the source domain in this example. This means that the selected instances from the source domain and 
their corresponding instances in the target domain are biased or not representative to the source domain and the target 
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Fig. 2. HHTL Case II: Cross-product and cross-language words bias. Consider a binary classification problem, where circles are of one class, and squares are 
of the other class. The points with gray background in the source domain (English) are the selected representatives, while those with gray background in 
the target domain (German) are their correspondences via translation or a feature map learned from English and German corresponding documents. In this 
case, the selected source-domain and target-domain instances are biased to populations of the source and target domain, respectively.

domain, respectively. As a result, the cross-domain feature mapping learned with such correspondences may not be effective 
for heterogeneous transfer learning.

Motivated by the above two examples, we propose a new heterogeneous transfer learning framework named “hybrid 
heterogeneous transfer learning” (HHTL) to transfer knowledge across heterogeneous domains effectively. Specifically, the 
proposed HHTL framework consists of two main components: 1) learning a heterogeneous feature mapping between the 
source domain and the target domain based on the pre-constructed instance-correspondences, and 2) discovering a more 
powerful representation to reduce the feature bias caused by either the difference in homogeneous feature space (e.g., book 
reviews v.s. song reviews in a same language) or an imprecise translator (e.g., English reviews v.s. English translations of 
German reviews). Our basic idea is that though the corresponding instances are biased in the original feature space, there 
may exist other feature spaces, projected onto which, respectively, the corresponding instances may become unbiased or 
representative to the source domain and the target domain. These two components are learned in an iterative manner. Fol-
lowing that, standard classification methods can be applied on the source-domain labeled data with the new representation 
to build an accurate target classifier. We propose two deep-learning-based architectures to implement the HHTL frame-
work, and develop five solutions to simultaneously learn the feature mapping and high-level features across heterogeneous 
domains in particular.

Note that the proposed HHTL framework is different from multi-view learning [11–13], where full correspondences 
between two views of data are required, and the labels of all the correspondences are assumed to be available in general or 
some of them are assumed to be available in the semi-supervised learning manner [14]. In HHTL, no label information of 
the cross-domain instance-correspondences is required. Moreover, in HHTL, labeled data are only assumed to be available in 
the source domain, and no labeled data is required in the target domain, while the goal is to learn a classifier for the target 
domain.

Compared to our preliminary work [15], the contributions of this paper are summarized as follows.

• We generalize the deep learning solution proposed in [15] to a unified HHTL framework.
• Based on the framework, we design two deep learning architectures, where our preliminary work falls into one of the 

two proposed architectures. Based on the new architecture proposed in this work, we further propose two specific 
solutions. In particular, the first solution enjoys closed forms for linear transformations on in-domain and cross-domain 
feature mappings. The second solution replaces the linear cross-domain mapping in the model by neural networks, 
which is more powerful for feature learning. The third solution further replaces the in-domain mapping by a neural 
network and proposes a co-learning objective for in-domain and cross-domain mappings such that all the components 
can be jointly optimized.

• We conduct more extensive experiments to verify the effectiveness of the proposed HHTL framework and solutions.

2. Deep architectures for Hybrid Heterogeneous Transfer Learning

2.1. Problem formulation

Given a set of target-domain unlabeled data DT ={xTi }n1
i=1, a set of source-domain labeled data DS ={(xSi , ySi )}n2

i=1, and 
an additional set of pairs of the source- and target- domain unlabeled data, DC = {(x(c)

Si
, x(c)

Ti
)}nc

i=1, namely correspondences, 
where xSi and x(c)

Si
are in RdS ×1, and xTi and x(c)

Ti
are in RdT ×1. In HTL, the goal is to learn a feature mapping GT to map 

data from the target domain feature space to the source domain feature space, and train the target-domain classifier f from 
the source-domain labeled data DS . In this way, making a prediction on any target-domain test data x∗ can be done by 
T
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performing f (GT x∗
T ). Alternatively, one can learn another feature mapping GS to map data from the source domain to the 

target domain, and train the target-domain classifier f ′ from the mapped source-domain labeled data {GS xSi , ySi }n2
i=1. In 

this way, making a prediction on any target-domain test data x∗
T can be done by performing f ′(x∗

T ).

For simplicity in presentation, we absorb a constant feature into the feature vector as xS = [x�
S 1]� or xT = [x�

T 1]� , 
and incorporate a bias term bS or bT within the weight matrix as WS = [WS bS ] or WT = [WT bT ]. We further denote by 
XS =

[
XS X(c)

S

]
the union source-domain feature vectors of the source-domain labeled and corresponding unlabeled data,1

and XT =
[

XT X(c)
T

]
the union target-domain feature vectors of the target-domain unlabeled data without correspondences 

and those with correspondences.
Formally speaking, as the cross-domain correspondences DC are not representative to the source domain data DS and/or 

the target domain data DT , the feature mapping GT (or GS ) learned from DC may not be effective for knowledge transfer 
across heterogeneous domains. Therefore, we aim to learn the feature mapping to minimize the difference between the 
mapped target (or source) domain data GT XT (or GS XS ) and the source (or target) domain data XS (or XT ). In this paper, 
we term this type of learning problem as Hybrid Heterogeneous Transfer Learning (HHTL).

2.2. Stacked Denoised Autoencoder and its extension

As our proposed deep learning approaches are built on top of Stacked Denoised Autoencoder (SDA), in this section, we 
briefly review this method and one of its extensions, Marginalized SDA (mSDA). SDA firstly randomly sets some values of 
the source domain features to be zero, which is referred to as a “corruption” of the source domain data. In total, one can 
obtain m different corruptions. After that SDA tries to learn high-level features by reconstructing these m corruptions. For 
example, German word “betonen” is translated to “emphasize” by using Google Translator. However in human writings, one 
may use the English words “highlight” and “stress” on the context instead of “emphasize” to express the meaning of the 
German word “betonen”. SDA aims to reconstruct the machine translated word “emphasize” by using the words “highlight” 
and “stress”. Therefore, the learned high-level features have capability to reduce feature bias.

In particular, we adopt mSDA for high-level feature learning for instances of homogeneous features. mSDA is an extension 
of SDA, which simplifies the reconstruction from two-level encoder and decoder to a single mapping. The reasons why we 
use mSDA are two folds: 1) the effectiveness of mSDA has been shown in homogeneous domain adaptation problems [16], 
and 2) compared to the standard SDA method, mSDA has proven to be much more efficient.

We denote by X ∈Rd×n the original raw data of n instances and d features. For simplicity in presentation, following the 
notations used in [16], we absorb a constant feature into the feature vector as x = [x� 1]� , and incorporate a bias term b
within the weight matrix as W = [W b]. The objective of mSDA is to learn a weight matrix W ∈R(d+1)×(d+1) by minimizing 
the squared reconstruction loss as follows,

m∑
i=1

∥∥∥X − WX(i)
∥∥∥2

F
, (1)

where X(i) denotes the i-th corrupted version of X. The solution to (1) depends on how the original features are corrupted. 
Denote by X̂S = [X X · · · X] the m-times repeated version of X, and X̃S the corrupted version of X̂S . The objective (1) can 
be written as

tr
[(

X̂ − WX̃
)� (

X̂ − WX̃
)]

. (2)

The solution to minimization of (2) can be explicitly expressed as follows,

W = PQ−1 with Q = X̃X̃� and P = X̂X̃�.

In general, to alleviate bias in estimation, a large number of corrupted replicates of the training data is required, which is 
computationally expensive. To address this issue, mSDA introduces a corruption probability p to model infinite corruptions, 
i.e., m −→∞. Define a feature vector q = [1 − p, · · · , 1 − p, 1]� ∈ Rd+1, where qi represents the probability of a feature 
indexed by i “surviving” after the corruption. Thus, we can obtain the expectation of (2), and its solution can be written 
analytically as

W = E[P]E[Q]−1, (3)

where E[P]i j = Si jq j , S = XX� , and

1 Note that in practice, if there is an additional set of unlabeled data in the source domain without correspondences in the target domain, one can use 
it as well for higher-level feature learning. However, in this paper, for simplicity in description, we do not assume that additional source-domain unlabeled 
data is available.
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Fig. 3. HHTL: Deep Architecture I.

Fig. 4. HHTL: Deep Architecture II.

E[Q]i j =
⎧⎨
⎩

Si jqiq j, if i �= j,

Si jqi, otherwise.
(4)

After W is learned, one can apply a nonlinear squashing-function, e.g., the hyperbolic tangent function tanh(·) used in this 
paper, on the outputs of mSDA to generate nonlinear features as follows,

H = tanh(WX). (5)

3. Proposed deep learning approaches for HHTL

In this section, we present the motivation and two overall architectures of our proposed deep learning framework for 
HHTL. Our motivation is that an intrinsic reason behind the bias issue of the instance-correspondences may be caused by 
the originally low-level feature representation, e.g., specific words used for expression. To address it, we seek a high-level 
semantic feature representation for the source (or target) domain, with which the bias issue can be addressed. To facilitate 
the knowledge transfer, in each layer k, one can then learn a cross-domain feature mapping GT ,k or a pair of cross-domain 
feature mappings GT ,k and GS,k with the cross-domain instance-correspondences with high-level feature representations, as 
shown in Fig. 3 and Fig. 4.

3.1. Approaches based on Deep Architecture I

In this section, we propose a family of two approaches based on Deep Architecture I shown in Fig. 3. The first approach 
is to construct each GT ,k by learning a linear feature mapping from the high-level feature HT ,k to HS,k , while the second 
one is to construct each GT ,k by learning a nonlinear cross-domain feature mapping through a neural network.

Recall that XS =
[

XS X(c)
S

]
and XT =

[
XT X(c)

T

]
. For simplicity in presentation, we denote by HS,1 = XS and HT ,1 = XT , 

respectively, where HS,1 =
[

HS,1 H(c)
S,1

]
and HT ,1 =

[
HT ,1 H(c)

T ,1

]
. We first recursively apply mSDA, i.e., (3) and (5) described 

in Section 2.2, on HS,k and HT ,k to learn higher-level features HS,k+1 and HT ,k+1, where k = 1, 2, ..., K −1. Note that when 
there is no bias on the corresponding instances in the target domain, one can simply set WT in (3) to be the identity matrix 
of the dimensionality dT + 1, and replace tanh(·) in (5) by the identity function.

3.1.1. Approach I: constructing linear mapping for GT ,k

In each layer k, we have the cross-domain correspondences represented by 
{

H(c)
S,k,H(c)

T ,k

}
. We aim to learn a linear feature 

transformation GT ,k ∈R(dS +1)×(dT +1) by solving the following minimization problem,
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Fig. 5. A neural network for learning cross-domain feature map (Deep Architecture I).

min
GT ,k

∥∥∥H(c)
S,k − GT ,kH(c)

T ,k

∥∥∥2

F
+ λ

∥∥GT ,k
∥∥2

F , (6)

where λ > 0 is a parameter of the regularization term on GT ,k , which controls the tradeoff between the alignment of the 
heterogeneous features and the complexity of GT ,k . The optimization problem (6) has a closed form solution that can be 
written as follows,

GT ,k =
(

H(c)
S,kH(c)

T ,k

�)(
H(c)

T ,kH(c)
T ,k

� + λI
)−1

, (7)

where I is the identity matrix of the dimensionality dT + 1. In the sequel, we denote by HHTL-IL the approach that is based 
on Deep Architecture I and learns linear transformations for cross-domain feature mappings {GT ,k}’s. Note that HHTL-IL was 
proposed in our previous work [15].

3.1.2. Approach II: constructing neural networks for GT ,k

One limitation of HHTL-IL is that learning a linear transformation for GT ,k may not be powerful enough to capture the 
relationships of heterogeneous features between the source domain and the target domain in each layer k. Therefore, we 
offer another approach denoted by HHTL-IN , which learns GT ,k by constructing a neural network with one hidden layer 
as shown in Fig. 5. The overall procedure of HHTL-IN is similar to that of HHTL-IL , but learns the pair of weight matrices {

W(1)

T ,k,W(2)

T ,k

}
to construct GT ,k in each layer k by solving the following minimization problem through backpropagation [17],

min
GT ,k=

{
W(1)

T ,k,W
(2)

T ,k

}
∥∥∥H(c)

S,k − W(2)

T ,k tanh
(

W(1)

T ,kH(c)
T ,k

)∥∥∥2

F
. (8)

After learning all high-level features and cross-domain feature mappings for each layer, we represent each source-domain 
labeled instance xSi by zSi that augments its original features with all the learned high-level features2 as

zSi =
[

h�
Si ,1 · · ·h�

Si ,K

]�
, (9)

where hSi ,k denotes the high-level feature representation of the instance xSi in the k-th layer, and hSi ,1 =xSi . We then apply 
a standard classification algorithm on {zSi , ySi }’s to train a target classifier f . To make a prediction on a target domain 
instance x∗

T , we first generate its high-level feature representations {h∗
T ,k}K

k=1 based on the learned DNNT , and represent it 
by

z∗
T =

[(
GT ,1h∗

T ,1

)� · · · (GT ,K h∗
T ,K

)�]�
. (10)

Finally, we apply the learned classifier f on z∗
T to make a prediction f (z∗

T ). The reason why we augment different layers 
of features for both training and testing is because we aim to incorporate additional high-level features learned in different 
layers to alleviate the bias for both the source domain and the target domain without losing original feature information.

The overall algorithms of HHTL-IL and HHTL-IN are summarized in Algorithm 1.

3.2. Approaches based on Deep Architecture II

From Algorithm 1, it can be shown that both HHTL-IL and HHTL-IN are very efficient as the learning in DNNS and DNNT

in Step 1 can be done independently and in parallel, and learning in cross-domain feature mappings in each layer in Step 2 
can be parallelized as well afterwards. However, as we mentioned, for approaches developed based on the Deep Architecture 
I, the learning of the high-level features and the cross-domain feature mappings are not fully integrated with each other. As 
a result, they may fail to maximally boost the performance of knowledge transfer across heterogeneous domains. Therefore, 
we propose Deep Architecture II as shown in Fig. 4. Similar to Deep Architecture I, a pair of neural networks, DNNS and 
DNNT , are learned on the source domain data and the target domain data, respectively. However, different from Deep 
Architecture I, in each layer k, a pair of cross-domain feature mappings, GT ,k and GS,k , is learned.

2 In an ideal case, if the high-level features and the cross-domain heterogeneous feature mapping can be perfectly learned in the top layer, one can just 
use them for training a classifier. However, HHTL is a challenging problem. Though multiple layers are introduced, it is still very difficulty to learn high-level 
features and a cross-domain heterogeneous feature mapping in the top layer perfectly. Therefore, here we propose to perform feature augmentation of all 
the features and cross-domain feature mappings learned in each layer to represent heterogeneous domain instances.
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Algorithm 1 HHTL based on Deep Architecture I (HHTL-IL and HHTL-IN ).
Input: Target domain unlabeled data DT = {xTi }n1

i=1, source domain labeled data DS = {(xSi , ySi )}n2
i=1, cross-domain correspondences DC ={(

x(c)
Si

,x(c)
Ti

)}nc

i=1
, a trade-off parameter λ, and the number of layers K .

Initializations: HS,1 = XS and HT ,1 = XT .
for k = 1, ..., K −1 do

1: Apply mSDA on HS,k and HT ,k to generate high-level features
HS,k+1 = mSDA(HS,k) and HT ,k+1 = mSDA(HT ,k), respectively.

end for
for k = 1, ..., K do

2: Learn a cross-domain feature mapping GT ,k by solving (6) for HHTL-IL or (8) for HHTL-IN .
end for
3: Do feature augmentation on source domain labeled data using (9), and train a classifier f with {zSi , ySi }’s.
Output: f , {GT ,k}K

k=1, DNNS in terms of {WS,k}K−1
k=1 and DNNT in terms of {WT ,k}K−1

k=1 .

Fig. 6. A neural network for learning cross-domain feature map (Deep Architecture II).

In this section, we develop another family of three approaches based on Deep Architecture II. Similar to HHTL-IL and 
HHTL-IN , in Deep Architecture II, the first approach is to construct each GT ,k (or GS,k) by learning a linear cross-domain fea-
ture mapping from HT ,k to HS,k (or from HS,k to HT ,k), while the second one is to construct each GT ,k (or GS,k) by learning 
a nonlinear cross-domain feature mapping through a neural network. The third approach aims to train the cross-domain 
feature mappings GT ,k and GS,k as well as the high-level features HT ,k and HS,k at each layer jointly to further boost the 
performance of the deep learning model.

3.2.1. Approach I: constructing linear mapping for GT ,k

Recall that HS,k =
[

HS,k H(c)
S,k

]
and HT ,k =

[
HT ,k H(c)

T ,k

]
. With the cross-domain correspondences 

{
H(c)

S,k,H(c)
T ,k

}
, we re-

cursively learn a pair of linear feature transformations GT ,k and GS,k by solving the following optimization problems, 
respectively,

min
GT ,k

∥∥∥H(c)
S,k − GT ,kH(c)

T ,k

∥∥∥2

F
+ λ

∥∥GT ,k
∥∥2

F , (11)

min
GS,k

∥∥∥H(c)
T ,k − GS,kH(c)

S,k

∥∥∥2

F
+ λ

∥∥GS,k
∥∥2

F . (12)

Similar to solution (7), the closed-form solutions for above problems can be computed. Then we apply mSDA on [
HT ,k (GS,kHS,k)

]
and 

[
HS,k (GT ,kHT ,k)

]
to learn high-level features HT ,k+1 and HS,k+1, until all {GT ,k}’s, {GS,k}’s, {HT ,k}’s, 

and {HS,k}’s, where k = 1, ..., K , are obtained.

3.2.2. Approach II: constructing neural networks for Gk

To capture nonlinear relationships of heterogeneous features between domains, we also construct neural networks with 
one hidden layer to approximate {GT ,k}’s and {GS,k}’s, respectively, as shown in Fig. 6. Similar to HHTL-IN , in each layer k, 
we construct one neural network for GT ,k (or GS,k) whose input layer represents H(c)

T ,k (or H(c)
S,k) and output layer represents 

H(c)
S,k (or H(c)

T ,k). Therefore, we can construct GT ,k and GS,k by solving the following minimization problems, respectively,

min
GT ,k=

{
W(1)

T ,k,W
(2)

T ,k

}
∥∥∥H(c)

S,k − W(2)

T ,k tanh
(

W(1)

T ,kH(c)
T ,k

)∥∥∥2

F
, (13)

min
GS,k=

{
W(1)

S,k,W
(2)

S,k

}
∥∥∥H(c)

T ,k − W(2)

S,k tanh
(

W(1)

S,kH(c)
S,k

)∥∥∥2

F
, (14)

whose solutions can be obtained using backpropagation and L-BFGS. In the sequel, we denote by HHTL-IIN this approach. 
The overall algorithms of HHTL-IIL HHTL-IIN are summarized in Algorithm 2.

3.2.3. Approach III: constructing neural networks for co-learning Gk, Hk
The previous proposed methods use mSDA as the backbone to learn HT ,k and HS,k for the target domain and the source 

domain. Unfortunately, due to the nature of mSDA, we cannot update the mappings in lower layers using the backpropaga-
tion algorithm. In this case, the feature learning of HS,k is one-way and cannot be updated. In order to enable the automatic 
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Algorithm 2 HHTL based on Deep Architecture II (HHTL-IIL and HHTL-IIN ).
Input: Target domain unlabeled data DT = {xTi }n1

i=1, source domain labeled data DS = {(xSi , ySi )}n2
i=1, cross-domain correspondences DC ={(

x(c)
Si

,x(c)
Ti

)}nc

i=1
, a trade-off parameter λ, and the number of layers K .

Initializations: HS,1 = XS and HT ,1 = XT .
for k = 1, ..., K −1 do

1: Learn a pair cross-domain feature mappings GT ,k and GS,k by solving (11) and (12) for HHTL-IIL or (13) and (14) for HHTL-IIN .
2: Apply mSDA on [HT ,k (GS,kHS,k)

]
and [HS,k (GT ,kHT ,k)

]
to learn high-level features HT ,k+1 and HS,k+1, respectively,

[
HT ,k+1 UT ,k+1

] = mSDA
([

HT ,k (GS,kHS,k)
])

,[
HS,k+1;US,k+1

] = mSDA
([

HS,k (GT ,kHT ,k)
])

.

end for
3: Learn a pair of cross-domain feature mappings GT ,K and GS,K for top layer by solving (11) and (12) for HHTL-IIL , or (13) and (14) for HHTL-IIN .
4: Do feature augmentation on source domain labeled data using (9), and train a classifier f with {zSi , ySi }’s.
Output: f , {GT ,k}K

k=1, DNNS in terms of {WS,k}K−1
k=1 and DNNT in terms of {WT ,k}K−1

k=1 .

feature update in lower layers, we first adopt the second-order Taylor expansion and approximation for the mSDA objective. 
Based on this approximation, we further incorporate it into deep architecture II to achieve co-learning for Gk and Hk . We 
named this approach as HHTL-IIC O , which is elaborated as follows.

The task of mSDA is to minimize the expected average loss under the corruption distribution p(x̃|x), as copies of the 
corruption m → ∞, which can be equally expressed as follows,

1

n

n∑
i=1

Ep(x̃i |xi)
[�(xi, fθ (x̃i))], (15)

where fθ (·) denotes the parameterized network to be optimized and loss function � denotes the auto-encoder loss function 
and n denotes the number of training examples. In the sequel of analysis, we take one instance x ∈ Rd and drop the 
subscript i for the simplicity. We approximate �(x, fθ (x̃)) by its second-order Taylor expansion at the mean of corruption 
μx =Ep(x̃)|x as follows,

�(x, fθ (x̃)) ≈ �(x, fθ (x)) + (x̃ − μx)
�∇x̃� + 1

2
(x̃ − μx)

�∇2
x̃ �(x̃ − μx), (16)

where ∇x̃� and ∇2
x̃ � are the first-order and second-order derivatives, respectively.

Taking the expectation of (16), we get the following approximation,

E[�(x, fθ (x̃))] ≈ �(x, fθ (x)) + 1

2
tr

(
�x∇2

x̃ �
)

, (17)

where �x = E[(x̃ − μx)(x̃ − μx)
�] is the corruption variance matrix. Note that the above formulation only requires the 

first-order and the second-order statistics of the corrupted data. While this approximation could in principle be used to 
formulate our new learning algorithm, we conduct a few more computationally convenient simplifications to backpropagate 
second derivatives in (17).

Specifically, the corruption is applied to each dimension of x independently, which immediately simplifies �x to a di-
agonal matrix. It further implies that only diagonal entries of the Hessian ∇2

x̃ � are computed. The z-th dimension of the 
Hessian’s diagonal is computed through the chain rule as follows,

∂2�

∂ x̃2
z

=
(

∂h

∂ x̃z

)�
∂2�

∂h2

∂h

∂ x̃z
+

(
∂�

∂h

)�
∂2h

∂ x̃2
z
, (18)

where h is the latent representation. Suggested by [18,19], the last term could be dropped to facilitate computation, and 
thus the right-hand side of (17) could be reduced to the following form,

�(x, fθ (x)) + 1

2

d∑
z=1

σ 2
x,z

dh∑
v=1

∂2�

∂h2
v

(
∂hv

∂ x̃z

)2

, (19)

where σ 2
x,z is the z-th element of �x ’s diagonal and hv is the v-th element in the hidden layer representation h ∈Rdh . If we 

use the random corruption strategy in mSDA, then μx = x, σ 2
x,z = x2

z p/(1 − p) with corruption probability p. For the multiple 
hidden layers, we can apply the aforementioned strategy to get the corresponding approximate second-order derivatives. For 
example, for the k-th hidden layer hk , the u-th element hk,u in its second-order derivative can be approximated as follows,

∂2�

∂h2
≈

∑ ∂2�

∂h2

(
∂hk+1,v

∂hk,u

)2

, (20)

k,u v k+1,v
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where hk+1,v is v-th element in the (k + 1)-th hidden layer representation hk+1. To this end, we can further update deep 
model parameters on the source and the target domains through optimizing the following objective function respectively,

�S(xS) = �(xS , fθS (xS)) + 1

2

dS∑
z=1

σ 2
xS,z

dS,h∑
v=1

∂2�

∂h2
S,v

(
∂hS,v

∂ x̃S,z

)2

, (21)

�T (xT ) = �(xT , fθT (xT )) + 1

2

dT∑
z=1

σ 2
xT ,z

dT ,h∑
v=1

∂2�

∂h2
T ,v

(
∂hT ,v

∂ x̃T ,z

)2

, (22)

where θS and θT denote the collection for parameters of DNNS and DNNT on the source and the target domains respectively, 
i.e., θS = {WS,k}K

k=1, θT = {WT ,k}K
k=1. Recall that the cross-domain feature learning objectives are

gT ,k(h(c)
T ,h(c)

S ) =
∥∥∥h(c)

S,k − W(2)

T ,k tanh
(

W(1)

T ,kh(c)
T ,k

)∥∥∥2

F
, (23)

gS,k(h(c)
T ,h(c)

S ) =
∥∥∥h(c)

T ,k − W(2)

S,k tanh
(

W(1)

S,kh(c)
S,k

)∥∥∥2

F
. (24)

By incorporating the above cross-domain feature learning objectives into the domain feature learning loss, we arrive at the 
following unified objective,

�overall =
n2∑

i=1

�S(xSi ) +
n1∑

i=1

�T (xTi ) +
nc∑

i=1

K∑
k=1

(
gT ,k(h(c)

Ti
,h(c)

Si
) + gS,k(h(c)

Ti
,h(c)

Si
)
)

. (25)

The model with the objective (25) (termed Co-learning Network) is able to jointly learn the in/cross-domain features and 
be trained by SGD, which is easily implemented by using deep learning packages such as Tensorflow [20] and Keras [21]. 
The algorithm is summarized in Algorithm 3.

Algorithm 3 HHTL-II based co-learning network (HHTL-IIC O ).
Input: Target domain unlabeled data DT = {xTi }n1

i=1, source domain labeled data DS = {(xSi , ySi )}n2
i=1, cross-domain correspondences DC ={(

x(c)
Si

,x(c)
Ti

)}nc

i=1
, a trade-off parameter λ, and the number of layers K .

Initializations: Randomly Initialize all the network parameters.
Updating Parameters: Update in-domain network parameters θS , θT and cross-domain feature mappings {GS,k, GT ,k}K

k=1 by solving (25) with Backpropa-
gation.
Feature Augmentation: Do feature augmentation on source domain labeled data using (9), and train a classifier f with {zSi , ySi }’s.
Output: f , {GT ,k}K

k=1, DNNS in terms of θS and DNNT in terms of θT .

4. Experiments

In experiments, we verify the effectiveness of the proposed HHTL framework on a number of cross-language classification 
tasks compared with several baseline methods in terms of classification accuracy, and explore the impact of the number of 
layers in the proposed deep architectures, and parameter sensitivity.

4.1. Experimental setup

Sentiment Analysis: The cross-language sentiment dataset [22] comprises of Amazon product reviews of three product cat-
egories: books, DVDs and music. These reviews are written in four languages: English (EN), German (GE), French (FR), and 
Japanese (JP). For each language, the reviews are split into a train file and a test file, including 2,000 reviews per category. 
We use the English reviews in the train file as the source-domain labeled data (or target-domain unlabeled data), the non-
English (each of the other three languages) reviews in the train file as the target-domain unlabeled data (or source-domain 
labeled data). Moreover, we apply Google translator on the non-English reviews in the test file to construct the cross-domain 
(English v.s. non-English) unlabeled correspondences.
Topic Categorization: The multilingual Reuters collection is a text dataset with 5,000 news articles from six topics (i.e., 
C15, CCAT, E21, ECAT, GCAT and M11) in five languages, English (EN), French (FR), German (GE), Italian (IT) and Spanish 
(SP), which are represented by a bag-of-words representation weighted by TF-IDF. Each document is also translated into the 
other four languages to construct correspondences in this dataset. Similar to the cross-language sentiment dataset, because 
in practice English documents are widely accessible, we take English as the source domain (or target domain), and each of 
the other languages as a target domain (or source domain), respectively. The performance of all methods are evaluated on 
the target-domain unlabeled data without any target-domain labeled data for training.
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Baseline Methods: Because in our HTL setting, no labeled data is available in training, existing HTL methods that require 
target-domain labeled data cannot be used as baselines for comparison. Therefore, we compare the proposed HHTL frame-
work with the following baseline methods and their deep learning extension where we used mSDA as the backbone for 
feature learning:

• SVM-SC/mSDA-SVM-SC: We design a baseline based on translation. We first train a classifier on the source-domain 
labeled data, and then make predictions on the source-domain corresponding data. In this way, the predicted labels 
on the source-domain corresponding data can be transferred to the target-domain corresponding data (translations). 
Finally, we train a target classifier with the “labeled” target-domain corresponding data to make predictions on the 
target-domain test data.

• CL-KCCA/mSDA-KCCA: We apply Cross-Lingual Kernel Canonical Component Analysis (CL-KCCA) [23] on the unlabeled 
correspondences between domains to learn two projections for the source and target languages, and then train a mono-
lingual classifier with the projected source-domain labeled data in the common latent space. Testing on target-domain 
unlabeled data is performed in the latent space as well.

• HeMap/mSDA-HeMap: We apply heterogeneous Spectral Mapping (HeMap) [24] to learn mappings to project data from 
both domains onto a common feature subspace. Note that HeMap does not take the instance correspondence informa-
tion into consideration.

• TSL/mSDA-TSL: We apply the correspondence-based HTL method proposed in [25], where the HTL problem is trans-
formed into a standard matrix completion (MC) problem, to train a classifier to predict the unlabeled data in the target 
domain.

• DAMA/mSDA-DAMA: We apply Domain Adaptation using Manifold Alignment (DAMA) [26] to learn a common feature 
subspace by utilizing the cross-domain correspondences for the manifold alignment.

For all experiments, we employ the linear support vector machine (SVM) [27] with default parameter settings as the base 
classifier. We use the cross-validation method to adjust the model parameters. Specifically, we choose λ in the range of 
{0.01, 0.1, 1, 10, 100} for HHTL, choose corruption probability p in mSDA in the range of {0.5, 0.6, 0.7, 0.8, 0.9}. By consider-
ing the cost of memory and computation, we fix the number of layers K used in DNNS and DNNT to be 3 when comparing 
HHTL with other baseline methods.3 We tune the parameter κ for CL-KCCA (see (5) in [23]), the parameter β for HeMap 
(see (1) in [24]), the parameter γ for TSL (see (2) in [25]), the parameter μ for DAMA (see Theorem 1 in [26]) in the range 
of {0.01, 0.1, 1, 10, 100}. For a fair comparison, we set the number of layers of all mSDA based baselines to be 3 as well.

4.2. Performance comparison

We evaluate the performance of all the comparison methods under two learning settings: 1) cross-language, and 2) 
cross-language + cross-product.

4.2.1. Comparison results in the cross-language setting
In this setting, the bias issue is caused by language translation as described in the first motivating example in Section 1. 

To conduct comparison experiments in this setting, we generate a number of cross-lingual classification tasks. For the tasks 
with English as the source domain on the cross-language sentiment dataset, the original English reviews on all the three 
products are used as the source-domain labeled data, and non-English reviews on all the three products are considered as 
the target-domain data during the training process. From the target domain data, we randomly choose 2,000 non-English 
reviews, and translate them to English to form the correspondences between domains. The remaining non-English reviews 
are used as the target-domain unlabeled data. The constructions on the tasks with English as the target domain are similar. 
The averaged results in terms of accuracy with standard deviation on the target-domain unlabeled data over 10 random 
runs are reported in Table 1, where, for instance, EN-FR denotes that English is used as the source domain while French is 
used as the target domain.

Similarly, for the tasks with English as the source domain on the multilingual Reuters collection, we used the English 
documents on all the six topics as the source-domain labeled data, and the non-English reviews on all the six topics are 
considered as the target domain data. From the target domain data, we randomly choose 5,000 non-English documents, 
and translate them to English to form the correspondence between domains. The remaining non-English documents are 
used the target-domain unlabeled data. The constructions on the tasks with English as the target domain are similar. The 
averaged results in terms of accuracy on the reviews of each non-English language over 10 random runs are reported in 
Table 2.

3 Note that regarding neural networks to learn cross-domain feature mappings in HHTL-IN , HHTL-IIN and HHTL-IIC O , we only use one hidden layer for 
all experiments.
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Table 1
Cross-language setting: sentiment classification (averaged acc ± std in %).

EN-FR

SVM-SC CL-KCCA HeMap DAMA TSL
73.10 ± 0.63 75.50 ± 1.54 50.23 ± 1.26 74.36 ± 1.54 73.27 ± 1.07

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
77.03 ± 0.80 80.80 ± 2.05 70.45 ± 1.20 81.16 ± 1.82 79.28 ± 1.50

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-CO
82.67 ± 1.68 82.87 ± 1.21 83.26 ± 1.50 84.12 ± 1.83 86.20 ± 1.59

EN-GE

SVM-SC CL-KCCA HeMap DAMA TSL
73.05 ± 1.02 75.00 ± 1.40 49.83 ± 1.08 75.89 ± 2.20 74.55 ± 1.25

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
77.01 ± 1.05 78.25 ± 1.57 70.52 ± 1.52 80.40 ± 1.36 76.67 ± 1.42

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-CO
82.76 ± 2.20 83.10 ± 1.03 83.25 ± 1.42 84.06± 1.39 87.30 ± 1.51

EN-JP

SVM-SC CL-KCCA HeMap DAMA TSL
65.50 ± 0.77 66.82 ± 1.25 51.30 ± 2.05 68.32 ± 1.72 67.82 ± 1.60

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
71.03 ± 1.10 70.19 ± 2.20 60.40 ± 1.03 72.68 ± 1.25 70.90 ± 1.44

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-CO
75.95 ± 1.58 76.12 ± 1.50 76.71 ± 1.55 77.40± 1.11 79.20 ± 1.52

FR-EN

SVM-SC CL-KCCA HeMap DAMA TSL
69.82 ± 0.98 71.45 ± 2.13 48.89 ± 1.37 72.24 ± 1.63 70.73 ± 1.12

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
71.80 ± 1.50 72.15 ± 1.84 62.47 ± 1.60 73.00 ± 1.30 72.05 ± 1.65

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

72.15 ± 1.84 79.67 ± 1.43 80.55 ± 1.52 81.77 ± 1.20 83.26 ± 1.68

GE-EN

SVM-SC CL-KCCA HeMap DAMA TSL
68.95 ± 1.45 70.24 ± 1.80 50.45 ± 1.62 71.67 ± 1.59 72.07 ± 1.47

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
72.82 ± 1.60 73.80 ± 1.56 60.50 ± 1.05 74.50 ± 1.75 73.00 ± 1.39

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

77.76 ± 1.42 78.26 ± 1.86 80.02 ± 1.50 81.31± 1.42 83.10 ± 1.55

JP-EN

SVM-SC CL-KCCA HeMap DAMA TSL
67.00 ± 1.47 68.27 ± 1.11 50.15 ± 1.20 69.58 ± 1.67 68.16 ± 1.52

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
70.95 ± 1.64 71.45 ± 2.62 60.30 ± 1.38 73.08 ± 1.51 71.50 ± 1.80

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

74.06 ± 1.72 76.86 ± 1.46 77.89 ± 1.52 78.67± 1.63 80.02 ± 1.75

From Tables 1 and 2, we observe that the proposed HHTL approaches (HHTL-IL , HHTL-IN , HHTL-IIL , HHTL-IIN and 
HHTL-IIC O ) outperform all the other baseline methods significantly in terms of classification accuracy. We also observe 
that the baseline equipped with mSDA can also largely improve their performance. The performance of CL-KCCA, DAMA, TSL 
and SVM-SC is much better than HeMap. The inferior performance of HeMap is caused by the fact that HeMap discards the 
valuable corresponding information in training. The cross-domain correspondences are incorporated either in a naive way 
(SVM-SC), dimension reduction (KCCA), manifold alignment (DAMA), matrix completion (TSL). Overall, these methods have 
comparable performance. However, mSDA-CCA performs slightly better than CL-KCCA, DAMA, TSL, and much better than all 
the other baselines.

Intuitively, the quality of the cross-domain heterogeneous feature mapping depends on its construction method. As 
shown in Tables 1 and 2, HHTL-IN and HHTL-IIN outperform HHTL-IL and HHTL-IIL , respectively. This suggests that nonlinear 
feature mappings constructed by neural networks can capture the complicated relationships between different languages 
more precisely than the linear feature mappings. Moreover, HHTL-IIC O performs the best, showing the benefits of joint 
optimization of the parameters.

4.2.2. Comparison results in the cross-language + cross-product setting
In this setting, we focus on cross-language + cross-product classification problems. To conduct comprehensive compar-

isons, we generate 18 cross-language and cross-product sentiment classification tasks with an English product domain as 
the source domain and 18 cross-language and cross-product sentiment classification tasks with an English product domain 
as the target domain on the cross-language sentiment dataset. For instance, the task EN-B-FR-D denotes that we use English 
Book reviews as the source-language labeled data, the French DVD reviews as the target-language test data, and all the 
French Book reviews in the test file and its English translations as the correspondences. Similarly, FR-B-EN-D denotes that 
we use French Book reviews as the source-language labeled data, the English DVD reviews as the target-language test data, 
and all the English Book reviews in the test file and its French translations as the correspondences.

The results are summarized in Tables 3 and 4. This setting is more challenging than the previous one due to cross 
problem and cross language shifts. We observe that the performance of all methods is lower than that in Tables 1 and 2, but 
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Table 2
Cross-language setting: topic categorization (averaged acc ± std in %).

EN-FR

SVM-SC CL-KCCA HeMap DAMA TSL
63.77 ± 1.25 63.41 ± 2.35 51.07 ± 1.47 64.89 ± 1.63 63.88 ± 2.05

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
70.60 ± 1.47 71.53 ± 1.20 60.50 ± 1.59 73.08 ± 1.60 72.10 ± 1.92

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

74.29 ± 1.23 74.82 ± 1.30 76.23 ± 1.17 76.57 ± 2.21 78.35 ± 1.80

EN-GE

SVM-SC CL-KCCA HeMap DAMA TSL
47.59 ± 1.44 55.71 ± 2.06 49.85 ± 1.26 57.32 ± 2.01 54.31 ± 1.71

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
53.70 ± 1.56 56.43 ± 2.0 52.31 ± 1.50 56.20 ± 1.45 54.80 ± 1.20

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

58.23 ± 1.15 59.05 ± 1.14 59.50 ± 1.56 60.02 ± 1.87 63.52 ± 1.60

EN-IT

SVM-SC CL-KCCA HeMap DAMA TSL
49.23 ± 1.56 56.17 ± 1.89 52.09 ± 1.35 58.01 ± 1.26 55.17 ± 1.27

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
58.40 ± 1.82 60.15 ± 1.85 54.33 ± 1.60 62.85 ± 1.55 60.02 ± 1.45

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

63.60 ± 0.73 64.33 ± 1.28 65.78 ± 1.63 66.89 ± 1.63 68.70 ± 1.52

EN-SP

SVM-SC CL-KCCA HeMap DAMA TSL
53.63 ± 1.22 56.69 ± 2.03 50.23 ± 1.28 57.07 ± 2.23 55.23 ± 2.20

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
56.38 ± 1.65 59.01 ± 1.54 55.50 ± 1.72 61.30 ± 1.85 57.02 ± 1.66

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

62.88 ± 1.25 63.05 ± 0.98 64.09 ± 1.40 65.35 ± 1.52 68.20 ± 1.70

FR-EN

SVM-SC CL-KCCA HeMap DAMA TSL
61.23 ± 1.46 62.56 ± 2.04 50.32 ± 1.63 63.68 ± 1.44 62.67 ± 2.22

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
66.02 ± 1.09 68.26 ± 1.53 56.45 ± 1.59 71.72 ± 1.15 67.51 ± 1.68

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

70.02 ± 1.15 72.36 ± 1.51 73.06 ± 1.31 74.85 ± 2.06 76.20 ± 2.30

GE-EN

SVM-SC CL-KCCA HeMap DAMA TSL
60.55 ± 1.28 61.07 ± 1.69 49.66 ± 1.55 62.54 ± 2.15 61.63 ± 1.50

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
65.80 ± 1.23 66.08 ± 2.14 55.70 ± 1.59 68.35 ± 1.28 65.47 ± 1.45

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

68.50 ± 1.08 69.05 ± 1.52 72.01 ± 1.47 73.02 ± 1.53 77.08 ± 1.36

IT-EN

SVM-SC CL-KCCA HeMap DAMA TSL
58.61 ± 1.49 59.86 ± 1.45 50.43 ± 1.67 60.86 ± 1.36 58.69 ± 1.63

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
65.53 ± 1.60 66.63 ± 1.75 58.20 ± 1.70 68.45 ± 1.57 65.47 ± 1.20

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

68.60 ± 1.55 70.36 ± 1.56 72.56 ± 1.42 73.66 ± 1.86 76.83 ± 1.61

SP-EN

SVM-SC CL-KCCA HeMap DAMA TSL
60.37 ± 1.61 60.45 ± 2.03 50.06 ± 1.43 62.96 ± 2.08 60.96 ± 1.58

mSDA-SVM-SC mSDA-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL
64.80 ± 1.90 64.97 ± 1.67 57.52 ± 1.86 67.60 ± 1.56 63.85 ± 1.60

HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

68.88 ± 1.25 70.42 ± 1.05 72.02 ± 1.32 72.80 ± 1.75 75.32 ± 1.28

the relations between methods are similar. In this setting the difference between HHTL-II and HHTL-I is more pronounced 
and, as before, the proposed HHTL-IIC O achieves the best performance on all the tasks.

4.3. Transfer distance

We also conduct experiment to analyze the distance between original instances in a domain and those “translated” 
from the other domain. Ben-David et al. [28] introduced the Proxy-A-distance (PAD) as a measure of how different two 
domains are from each other. The metric is defined as 2(1 − 2ε), where ε is the generalization error of a classifier (a linear 
SVM in our case) trained on the binary classification problem to distinguish inputs between the two domains. PAD gives 
0 when ε = 0.5, i.e. random guessing, and in this case it is hard to distinguish the samples of two domains. PAD gives 
2 when ε = 0, i.e. no error, which means that is it easy to distinguish the samples of two domains. In this experiment, 
we choose the cross-language sentiment classification as a showcase to analyze the PAD of the source domain instances 
and the “translated” instances from the target domain. Table 5 summarizes the results of the PAD before and after HHTL 
approaches are applied, where the PAD before HTL corresponds HHTL with only one layer. From the results, we observe 
that HHTL approaches reduce the PAD compared to the original feature space, which means that the domain difference is 
reduced after applying HHTL.
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HHTL-IIL HHTL-IIN HHTL-IIC O

78.23 ± 1.62 79.41 ± 1.58 81.25 ± 1.70
69.00 ± 1.33 70.26 ± 1.43 73.45 ± 1.38
78.76 ± 1.30 80.22 ± 1.96 83.50 ± 1.46
72.42 ± 1.29 74.25 ± 1.61 77.02 ± 1.61
73.02 ± 1.18 74.46 ± 1.40 76.53 ± 1.58
64.77 ± 1.40 66.03 ± 1.08 68.10 ± 1.36
80.89 ± 1.64 81.27 ± 1.42 83.82 ± 1.92
76.81 ± 1.61 78.60 ± 1.39 80.33 ± 1.57
81.45 ± 1.30 82.32 ± 1.24 84.21 ± 1.53
80.50 ± 1.63 80.14 ± 1.47 82.62 ± 1.50
72.78 ± 1.67 74.53 ± 1.61 76.37 ± 1.60
72.42 ± 1.78 73.96 ± 1.27 75.49 ± 1.66
78.86 ± 1.15 79.17 ± 1.36 80.80 ± 1.82
81.55 ± 1.65 79.25 ± 1.69 81.33 ± 1.64
81.55 ± 1.73 83.18 ± 1.33 85.61 ± 1.82
82.78 ± 1.40 83.36 ± 1.49 85.60 ± 1.62
72.48 ± 1.87 72.59 ± 1.63 75.23 ± 1.56
76.26 ± 1.57 77.06 ± 1.68 79.68 ± 1.30

HHTL-IIL HHTL-IIN HHTL-IIC O

74.23 ± 1.55 77.63 ± 1.61 79.40 ± 1.58
67.01 ± 1.37 68.60 ± 1.35 70.82 ± 1.62
76.44 ± 1.28 78.52 ± 1.32 81.27 ± 1.50
73.05 ± 1.72 73.95 ± 1.74 75.58 ± 1.56
75.64 ± 1.66 77.42 ± 1.36 79.05 ± 1.45
64.52 ± 1.40 65.67 ± 1.28 68.03 ± 1.20
80.52 ± 1.58 81.02 ± 1.52 83.48 ± 1.55
75.66 ± 1.52 76.42 ± 1.61 79.16 ± 1.40
80.78 ± 1.62 81.46 ± 1.52 83.70 ± 1.18
80.50 ± 1.57 80.62 ± 1.56 81.29 ± 1.60
72.46 ± 1.70 73.50 ± 1.29 74.79 ± 1.46
71.40 ± 1.82 72.64 ± 1.55 74.58 ± 2.09
77.32 ± 1.42 78.26 ± 1.72 80.37 ± 1.50
78.68 ± 1.29 79.01 ± 1.34 81.65 ± 2.02
80.62 ± 1.82 81.55 ± 1.63 81.55 ± 1.63
81.70 ± 1.37 82.46 ± 1.48 85.30 ± 1.80
72.48 ± 1.87 72.59 ± 1.63 73.90 ± 2.10
76.06 ± 1.07 76.52 ± 1.80 78.27 ± 1.05
Table 3
Cross-language + cross-domain setting: sentiment classification with EN as the source language (average acc ± std in %).

Task mSDA-SVM-SC mSDA-CL-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL HHTL-IL HHTL-IN

EN-B-FR-D 75.67 ± 1.36 72.96 ± 1.72 55.30 ± 1.26 76.33 ± 1.50 73.42 ± 1.62 76.75 ± 1.73 76.82 ± 1.46
EN-B-FR-M 67.50 ± 1.82 64.29 ± 1.29 54.81 ± 1.40 68.28 ± 1.27 65.03 ± 1.86 67.65 ± 1.54 68.05 ± 1.38
EN-B-GE-D 75.33 ± 1.70 78.23 ± 2.16 56.47 ± 1.38 76.20 ± 1.82 76.95 ± 1.61 75.10 ± 1.27 75.69 ± 1.61
EN-B-GE-M 66.32 ± 2.05 62.52 ± 1.63 57.58 ± 1.62 70.80 ± 1.56 64.28 ± 1.73 69.55 ± 1.29 71.08 ± 1.45
EN-B-JP-D 72.72 ± 1.65 71.95 ± 1.86 53.80 ± 1.81 73.00 ± 1.74 71.69 ± 1.62 72.56 ± 1.52 72.67 ± 1.10
EN-B-JP-M 56.48 ± 2.10 57.17 ± 1.90 52.51 ± 1.45 59.95 ± 1.87 56.56 ± 1.82 62.39 ± 1.07 63.01 ± 1.32
EN-D-FR-B 75.50 ± 1.67 72.32 ± 2.31 54.59 ± 1.07 77.76 ± 1.82 75.52 ± 1.40 79.27 ± 1.63 79.85 ± 1.38
EN-D-FR-M 73.05 ± 1.53 68.87 ± 1.77 52.82 ± 1.56 75.87 ± 1.60 72.70 ± 1.63 75.43 ± 2.06 76.12 ± 1.46
EN-D-GE-B 78.09 ± 1.56 75.32 ± 1.67 56.98 ± 1.60 80.91 ± 1.80 76.86 ± 1.70 79.35 ± 1.41 80.27 ± 1.55
EN-D-GE-M 74.95 ± 1.45 75.69 ± 1.63 56.26 ± 1.20 77.62 ± 1.97 75.08 ± 1.30 78.55 ± 1.66 79.13 ± 1.29
EN-D-JP-B 74.21 ± 1.57 72.60 ± 1.39 52.85 ± 1.72 75.86 ± 1.66 73.06 ± 1.86 68.12 ± 1.76 70.16 ± 1.65
EN-D-JP-M 65.10 ± 1.54 66.89 ± 1.34 52.78 ± 1.30 68.38 ± 1.62 67.05 ± 1.48 70.58 ± 1.75 71.24 ± 1.63
EN-M-FR-B 78.16 ± 1.70 74.23 ± 1.63 56.40 ± 1.60 79.45 ± 1.80 76.50 ± 1.07 77.80 ± 2.36 78.01 ± 1.75
EN-M-FR-D 75.39 ± 1.82 72.76 ± 1.56 55.07 ± 1.45 76.68 ± 1.02 73.52 ± 1.18 77.04 ± 1.37 80.95 ± 1.42
EN-M-GE-B 78.21 ± 1.52 76.82 ± 1.47 53.58 ± 1.06 79.10 ± 1.84 76.92 ± 1.50 78.30 ± 1.37 80.96 ± 1.60
EN-M-GE-D 80.60 ± 1.06 72.28 ± 1.3 57.43 ± 1.70 81.58 ± 1.63 79.39 ± 1.75 81.42 ± 1.26 81.66 ± 1.64
EN-M-JP-B 70.37 ± 1.69 68.83 ± 1.72 56.05 ± 1.28 72.06 ± 1.52 70.35 ± 1.57 71.65 ± 1.56 71.87 ± 2.10
EN-M-JP-D 73.58 ± 1.70 71.06 ± 1.96 56.80 ± 1.05 74.46 ± 1.58 72.04 ± 1.65 74.25 ± 1.75 74.39 ± 1.38

Table 4
Cross-language + cross-domain setting: sentiment classification with EN as the target language (average acc ± std in %).

Task mSDA-SVM-SC mSDA-CL-KCCA mSDA-HeMap mSDA-DAMA mSDA-TSL HHTL-IL HHTL-IN

FR-B-EN-D 70.54 ± 1.61 70.60 ± 1.36 55.62 ± 1.54 72.36 ± 1.67 70.68 ± 1.60 71.99 ± 1.85 73.67 ± 1.68
FR-B-EN-M 62.53 ± 1.70 61.91 ± 1.25 54.59 ± 1.60 66.35 ± 1.50 63.40 ± 1.53 65.52 ± 1.33 66.85 ± 1.65
GE-B-EN-D 72.81 ± 1.82 72.56 ± 2.03 56.70 ± 1.67 74.60 ± 1.63 72.05 ± 1.32 73.67 ± 1.20 74.38 ± 1.65
GE-B-EN-M 64.80 ± 2.05 62.63 ± 1.5 52.52 ± 1.62 67.82 ± 2.01 63.05 ± 1.70 69.85 ± 1.74 71.26 ± 1.53
JP-B-EN-D 73.48 ± 1.24 73.55 ± 1.6 54.05 ± 1.16 75.62 ± 1.85 72.91 ± 1.34 74.42 ± 1.60 75.02 ± 1.52
JP-B-EN-M 56.04 ± 2.01 55.40 ± 1.88 53.60 ± 1.50 58.32 ± 1.35 56.02 ± 1.61 58.65 ± 1.23 62.20 ± 1.48
FR-D-EN-B 73.22 ± 1.07 71.45 ± 1.55 49.48 ± 1.57 71.86 ± 1.54 70.62 ± 1.65 77.46 ± 1.58 79.10 ± 1.62
FR-D-EN-M 72.06 ± 1.50 69.64 ± 1.82 55.21 ± 1.03 74.31 ± 1.80 70.28 ± 1.52 73.62 ± 2.25 74.24 ± 1.53
GE-D-EN-B 79.17 ± 1.18 77.70 ± 1.62 53.06 ± 1.52 79.83 ± 2.02 78.62 ± 1.63 78.44 ± 1.52 80.36 ± 1.45
GE-D-EN-M 76.03 ± 2.28 74.57 ± 1.89 54.26 ± 1.64 78.67 ± 1.27 75.29 ± 1.42 76.45 ± 1.72 78.20 ± 1.65
JP-D-EN-B 71.29 ± 1.30 71.60 ± 1.37 56.50 ± 1.47 72.02 ± 2.04 70.35 ± 1.28 70.23 ± 1.55 71.68 ± 1.28
JP-D-EN-M 65.02 ± 2.07 62.90 ± 2.02 53.48 ± 1.45 68.40± 2.13 63.42 ± 1.58 68.23 ± 1.38 69.40 ± 1.35
FR-M-EN-B 75.38 ± 1.33 73.03 ± 1.57 55.02 ± 2.18 76.78 ± 1.80 74.25 ± 1.55 75.40 ± 2.06 76.16 ± 1.84
FR-M-EN-D 74.48 ± 2.10 72.64 ± 1.70 56.85 ± 1.18 76.43 ± 2.05 74.48 ± 2.01 75.50 ± 1.43 77.20 ± 1.57
GE-M-EN-B 77.61 ± 1.78 75.06 ± 1.52 53.08 ± 1.57 78.93 ± 1.24 74.35 ± 1.70 77.06 ± 1.65 78.67 ± 1.51
GE-M-EN-D 77.72 ± 1.80 75.28 ± 1.56 56.25 ± 1.43 77.25 ± 2.00 74.30 ± 1.64 78.20 ± 1.62 79.82 ± 1.81
JP-M-EN-B 69.02 ± 1.43 68.69 ± 1.50 57.04 ± 1.20 69.70 ± 1.06 66.23 ± 1.25 71.65 ± 1.56 71.87 ± 2.10
JP-M-EN-D 75.40 ± 1.62 73.06 ± 1.96 53.41 ± 1.26 76.01 ± 1.56 74.91 ± 1.26 74.28 ± 1.64 75.52 ± 1.47
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Table 5
Proxy a-distances comparisons.

Domains Before HHTL-IL HHTL-IN HHTL-IIL HHTL-IIN HHTL-IIC O

EN-FR 1.85 1.81 1.80 1.79 1.77 1.75
EN-GE 1.83 1.80 1.78 1.78 1.77 1.73
EN-JP 1.98 1.93 1.92 1.91 1.90 1.86
FR-EN 1.87 1.85 1.82 1.81 1.80 1.77
GE-EN 1.88 1.84 1.83 1.82 1.80 1.78
JP-EN 1.96 1.94 1.91 1.90 1.89 1.85

Table 6
Cross-language setting: Deep Architecture I with varying number of layers on sentiment classification (average accuracy ± standard deviation in %).

Task HHTL-IL (# layers)
1 2 3 4 5 6

EN-FR 74.01 ± 1.67 79.02 ± 1.50 82.67 ± 1.68 83.14 ± 1.75 83.40± 1.10 83.48± 1.03
EN-GE 73.08 ± 2.05 78.54 ± 1.87 82.76 ± 2.20 83.23 ± 2.21 84.00 ± 1.11 83.92 ± 1.20
EN-JP 66.12 ± 1.63 71.03 ± 2.01 75.95 ± 1.58 76.37 ± 1.63 76.78 ± 1.20 76.80 ± 1.01
FR-EN 70.01 ± 1.23 76.01 ± 1.45 79.67 ± 1.43 80.75 ± 1.85 81.03 ± 1.73 81.02 ± 1.05
GE-EN 67.65 ± 1.37 73.88 ± 1.96 77.76 ± 1.42 79.36 ± 1.23 80.21 ± 1.25 80.16 ± 1.10
JP-EN 67.00 ± 1.47 71.68 ± 2.33 74.06 ± 1.72 75.69 ± 1.76 76.10 ± 1.15 76.12 ± 1.23

HHTL-IN (# layers)
1 2 3 4 5 6

EN-FR 74.17 ± 1.62 80.79 ± 1.83 82.87 ± 1.21 84.54 ± 1.62 85.28 ± 1.62 85.26 ± 1.37
EN-GE 73.57 ± 1.84 79.45 ± 1.65 83.10 ± 1.03 85.04 ± 1.80 85.53 ± 1.37 85.56 ± 1.04
EN-JP 66.54 ± 1.70 72.46 ± 1.57 76.12 ± 1.50 78.46 ± 1.43 79.02 ± 1.14 79.01 ± 1.10
FR-EN 71.20 ± 2.03 77.38 ± 1.69 80.55 ± 1.52 82.01 ± 1.55 82.68 ± 1.05 82.70 ± 1.16
GE-EN 68.81 ± 1.63 75.33 ± 2.06 78.26 ± 1.86 80.22 ± 1.28 81.01 ± 1.13 81.00 ± 1.05
JP-EN 68.22 ± 1.85 72.40 ± 1.70 76.86 ± 1.46 77.69 ± 1.60 78.13 ± 1.40 78.20 ± 1.14

Table 7
Cross-language setting: Deep Architecture II with varying number of layers on sentiment classification with EN as the source language (average accuracy ±
standard deviation in %).

Task HHTL-IIL (# layers)
1 2 3 4 5 6

EN-FR 74.01 ± 1.67 80.56 ± 1.49 83.26 ± 1.50 84.05 ± 1.06 84.20 ± 1.02 84.23 ± 1.00
EN-GE 73.08 ± 2.05 79.42 ± 1.85 83.25 ± 1.42 84.71 ± 1.80 85.34 ± 1.67 85.40 ± 1.13
EN-JP 66.12 ± 1.63 72.15 ± 1.61 76.71 ± 1.55 77.54 ± 1.69 78.15 ± 1.65 78.10 ± 1.17
FR-EN 70.01 ± 1.23 76.33 ± 1.80 81.77 ± 1.20 82.35 ± 1.94 82.82 ± 1.57 82.85± 1.16
GE-EN 67.65 ± 1.37 75.67 ± 1.75 80.02 ± 1.50 82.12 ± 1.50 82.63 ± 1.40 82.60 ± 1.15
JP-EN 67.00 ± 1.47 73.34 ± 2.06 77.89 ± 1.52 80.06 ± 1.43 80.60 ± 1.15 80.71 ± 1.04

HHTL-IIN (# layers)
1 2 3 4 5 6

EN-FR 74.17 ± 1.62 81.24 ± 2.04 84.12 ± 1.83 85.75 ± 1.75 86.21 ± 1.17 86.23 ± 1.10
EN-GE 73.57 ± 1.84 82.54 ± 1.85 84.06 ± 1.39 85.86 ± 1.80 86.10 ± 1.36 86.11 ± 1.15
EN-JP 66.54 ± 1.70 73.03 ± 1.47 77.40 ± 1.11 79.64 ± 1.56 80.05 ± 1.16 80.01 ± 1.03
FR-EN 71.20 ± 2.03 77.60 ± 1.69 82.26 ± 1.68 82.90 ± 1.42 83.27 ± 1.13 83.26 ± 1.06
GE-EN 68.81 ± 1.63 76.78 ± 1.68 81.31 ± 1.42 83.53 ± 1.50 84.16 ± 1.63 84.20 ± 1.12
JP-EN 68.22 ± 1.85 75.09 ± 1.55 78.67 ± 1.63 80.17 ± 1.41 80.60 ± 1.15 80.67 ± 1.11

HHTL-IIC O (# layers)
1 2 3 4 5 6

EN-FR 78.31 ± 1.80 84.15 ± 1.72 86.20 ± 1.59 87.78 ± 1.59 89.50 ± 1.14 89.63 ± 1.26
EN-GE 78.02 ± 1.39 83.89 ± 1.81 87.30 ± 1.51 88.45 ± 1.63 88.93 ± 1.62 88.90 ± 1.13
EN-JP 70.14 ± 1.64 76.21 ± 1.50 79.20 ± 1.56 81.13 ± 1.17 81.40 ± 1.25 81.41 ± 1.18
FR-EN 76.56 ± 1.72 80.24 ± 1.58 82.26 ± 1.68 83.48 ± 1.60 83.75 ±1.52 83.90 ± 1.24
GE-EN 74.39 ± 1.60 79.06 ± 1.37 83.10 ± 1.55 84.60 ± 1.45 85.20 ± 1.46 85.18 ± 1.05
JP-EN 74.15 ± 1.58 78.38 ± 1.50 80.02 ± 1.75 82.30 ± 1.28 83.21 ± 1.53 83.10± 1.30

4.4. Impact of the number of layers in HHTL

In this experiment, we aim to analyze the impact of the number of layers used in HHTL. As shown in Tables 6 and 7. 
The more layers are used in HHTL, the better performance is achieved. This supports the intuition that high level features 
generated by deep layers reduce bias. On the other hand, the performance saturates when the layer size is larger than 5. As 
we mentioned, by considering the computational cost, we set the number of layers to 3 for HHTL to conduct experiments 
in previous sections.
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Fig. 7. Parameter analysis.

4.5. Impact of different correspondences size

In the HTL setting, a common assumption is that the number of correspondences across domains, nc , is small, which may 
affect the performance of cross-language classification. In this section, we conduct experiments to analyze the impact of the 
correspondences size nc to the overall performance of HHTL and the mSDA variant of baselines. Note that, here, we use 
the cross-language sentiment dataset under the cross-language setting to design experiments. We vary the correspondences 
size in the range of [50, 250, 500, 750, 1000, 1250, 1500, 1750]. The results are reported in Fig. 7. From the figures, we 
observe that all the methods that use the unlabeled correspondences consistently outperform mSDA-HeMap, which discards 
the correspondence information. We observe that all methods improve with larger correspondence sizes and the relative 
performance between methods is stable across sizes. The difference between HHTL-II and HHTL-I is more pronounced when 
the correspondence size is small. HHTL-IIC O achieves the best performance on all correspondence sizes.

4.6. Parameter sensitivity study

In this section, we study the parameter sensitivity of the proposed HHTL approaches. Besides the number of layers 
and the size of cross-domain correspondences, both HHTL-IL and HHTL-IIL have a tradeoff parameter λ, while HHTL-IN

and HHTL-IIN have an additional parameter specifying the size of the hidden layer dimension h of cross-domain neural 
networks. We first analyze how performance of HHTL-IL and HHTL-IIL in terms of accuracy changes with varying values of 
λ in the range of [0.001, 0.01, 1, 10, 100]. From Figs. 8(a) and 8(b), we observe that the performance of both HHTL-IL and 
HHTL-IIL is stable when λ is no more than 10.

We further analyze how the performance of HHTL-IN and HHTL-IIN changes with varying values of h. To eliminate the 
effect of dimension scale, we use the ratio α between the hidden neurons size and the sum of source and target domain 
dimensions as measure of hidden layer size, i.e., α = h

dS +dT
. We vary the α in the range of 

[
1
4 , 1

3 , 1
2 , 2

3 ,1
]

. From Figs. 8(c) 
and 8(d), we observe that the performance of both HHTL-IN and HHTL-IIN in terms of accuracy remains stable when 
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Fig. 8. Parameter sensitivity analysis of HHTL.

h is smaller than ds + dT . When h is around the mean of the source domain and target domain dimensions, HHTL-IN and 
HHTL-IIN achieve their best performance, respectively. This observation also matches the empirically-derived rules-of-thumb 
in [29] and experimental results in [30]. Finally, we analyze the impact of the hidden neurons size of each domain in 
HHTL-IIC O by fixing α = 1/2. We define the dimension decay rate β to be the ratio between the size of the current layer 
and of the previous layer. i.e., β = hK+1

hK
. We vary the β in the range of 

[
1
4 , 1

3 , 1
2 , 2

3 ,1
]

. The results are shown in the Fig. 8(e). 
We observe that the performance achieves stable performance with decay rate β < 1. The smaller decay rate always leads 
satisfactory performance agreeing with the intuition that high level feature are usually more compact and requires fewer 
neurons.
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5. Related work

Our proposed framework HHTL is mainly related to the following topics in machine learning: homogeneous transfer 
learning, heterogeneous transfer learning, and deep learning. In this section, we review related work in these topics.

5.1. Homogeneous transfer learning

Homogeneous transfer learning aims to improve generalization of a predictive model across different domains of the 
same feature space. Learning a good feature representation for different domain data is crucial for homogeneous transfer 
learning [28,1]. For instance, Blitzer et al. [4] proposed the structural correspondence learning algorithm (SCL) that uses the 
co-called “pivot” features across domains as a bridge to learn new features for reducing the domain difference. Pan et al. 
[5,31,32] proposed a series of dimensionality reduction methods based on Hilbert space embedding of distributions [33] to 
learn a low-dimensional space for both the source domain and the target domain data, where the distance in distributions 
between domains can be reduced while important properties of the original data, e.g., data variance or geometric structure, 
can be preserved. Daumé III [34] proposed a simple mapping function which augments the feature from both the source 
domain and the target domain in a high dimensional feature space. Daumé III et al. [35] further proposed an extension in 
a semi-supervised learning manner, where unlabeled data in the target domain are taken into consideration in learning. 
Gong et al. [36] proposed a kernel-based method to embed both the source domain and the target domain datasets into 
Grassmann manifolds and construct geodesic flows between them to model domain shift and learn new feature representa-
tions for the target domain.

5.2. Heterogeneous transfer learning

Heterogeneous transfer learning (HTL) aims to transfer knowledge across different feature spaces. A crucial research is-
sue in HTL is to find a common feature representation for both the source domain and the target domain data, on which 
knowledge transfer is effective. In general, there are two approaches to learning a common representation for data of het-
erogeneous domains. One approach is to learn a pair of feature mappings to transform the source domain and the target 
domain data to a latent common feature space, respectively [24,22,26,37]. For instance, Shi et al. [24] proposed the Het-
erogenous Spectral Mapping method (HeMap) to learn a pair of feature mappings based on spectral embedding, where label 
information is discarded in learning. Wang and Mahadevan [26] proposed a manifold alignment method denoted by DAMA, 
to align heterogenous features in a latent space based on a manifold regularization term. In DAMA, label information in both 
the source domain and the target domain is exploited to construct a similarity matrix for manifold alignment. Duan et al. 
[37] proposed the Heterogenous Feature Augmentation method (HFA) to augment homogeneous common features learned 
by a SVM-style approach with heterogeneous features of the source domain and the target domain.

Another approach is to learn an asymmetric transformation to map data from one domain to another domain directly [6,
38]. Our proposed framework belongs to this approach. Kulis [6] proposed an Asymmetric Regularized Cross-domain trans-
formation method (ARC-t) to learn an asymmetric transformation across domains based on metric learning. In ARC-t, label 
information in the both the source domain and the target domain is utilized to construct similarity and dissimilarity con-
straints between instances from the source domain and the target domain, respectively. The formulated metric learning 
problem can be solved by an alternating optimization algorithm. Zhou et al. [38] proposed to learn a sparse feature map-
ping between the source domain and the target domain by exploiting commonality between multiple binary classification 
tasks decomposed from the target multi-class classification problem.

Based on different assumptions on inputs for training, previous HTL approaches can be further classified into two settings. 
In a first setting, a few target-domain labeled data are assumed to be available for training [6,26,37,38], while in a second 
setting, some unlabeled correspondences between heterogeneous domains are assumed to be available for training [7,25,
39]. In the latter setting, which is our focus, Dai et al. [7] proposed a probabilistic model to construct a “translator” to 
build connections between instances from different domains. Xiao and Guo et al. [25] applied an existing matrix completion 
technique to HTL. Specifically, in their proposed method, with sufficient cross-domain correspondences given in advance, 
the goal is to reconstruct “missing correspondences” for all the instances observed in either the source domain or the target 
domain using matrix completion. Pan et al. [39] proposed a matrix-factorization-based approach to transfer knowledge 
across different recommender systems with heterogeneous user feedbacks by using some common users and items as a 
bridge.

However, most of these correspondence-based HTL methods implicitly assume that the cross-domain corresponding in-
stances are representative in the source domain and the target domain, respectively. In contrast with previous approaches, in 
our proposed HHTL framework, we allow the cross-domain instance-correspondences to be biased, and aim to address this 
issue by using a deep-learning-based architecture such that a precise common feature representation for both the source 
domain data and the target domain data can still be learned.

5.3. Transfer learning through deep learning

Recently, deep learning techniques [40,41] have been proposed for transfer learning. A common goal of deep learning 
approaches to transfer learning is to discover high-level features from the original features through a hierarchical structure, 



J.T. Zhou et al. / Artificial Intelligence 275 (2019) 310–328 327
which are supposed to capture the generic factors of variations present in different domains, i.e., the source domain and the 
target domain.

Raina et al. [42] proposed a self-taught learning framework based on sparse coding [43] to learn high-level features from 
a huge amount of unlabeled data whose labels can be different from those of the target classification task. Glorot et al. [44]
proposed to learn a universal classifier for cross-domain sentiment classification by applying stack denoised autoencoder 
(SDA) [45] to learn invariant features from large-scale unlabeled data from various product domains. In a follow-up work, 
Chen et al. [16] proposed a variation of SDA for transfer learning, namely marginalized SDA (mSDA), which has been shown 
to be more effective and efficient for learning high-level features for transfer learning. Yosinski et al. [46] and Donahue et al. 
[47] empirically studied how to reuse high-level features extracted from a deep neural network trained on a large-scale 
dataset or a number of source tasks to learn more powerful high-level features for the target task efficiently and effectively. 
More recently, Zhuang et al. [48] and Long et al. [49] proposed to encode KL-divergence or Maximum Mean Discrepancy 
(MMD) [50] into deep autoencoders or deep convolutional neural networks for learning high-level features for transfer 
learning, respectively. These methods are proposed for homogeneous transfer learning, and thus not applicable for HTL.

Socher et al. [30] proposed a deep-learning-based approach to zero-shot learning, which learns a feature mapping be-
tween data of different modalities, i.e., text v.s. image, with a lot of multi-modal data, i.e., pairs of text-image instances, to 
detect instances of the classes that are not present in training. Though this can be considered as an example of HTL, the cor-
respondences between different modalities need to be fully observed as inputs in training. The focus of our work is learning 
a precise feature mapping of heterogeneous features between domains for HTL when cross-domain correspondences are 
insufficient and biased.

6. Conclusions

In this paper, we propose a Hybrid Heterogeneous Transfer Learning (HHTL) framework which allows cross-domain 
instance-correspondences to be biased to the source domain (and the target domain). Based on the framework, we propose 
two deep architectures to simultaneously transfer knowledge across different feature spaces through cross-domain feature 
transformation and correct the data bias issue through high-level features learning. We conduct extensive experiments on a 
number of cross-language sentiment or document classification tasks to demonstrate the superiority of the proposed HHTL 
approaches over several baseline methods. In our future work, we plan to extend our framework to apply to other HTL 
applications, such as text v.s. images applications.
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